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According to the IEA in 2003,
investment needed thru 2030 is $16 trillion...

At least $10 trillion for fossil fuels
and their delivery infrastructure...



Scenarios of many types
powerfully shape
perceptions about the future
that frame near term decisions.

“Stapilizing
Climate chnange
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Scenarios for Global Carbon Dioxide Emissions
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What do they mean?
How do | know?

Does it make sense?



Simplified Line of Scenario Logic:
Energy to Emissions

Emissions Carbon Climate Climate
Scenarios Cycle Sensitivity Impacts
Response



Population

Simplified Line of Scenario Logic:
Energy to Emissions

Economic
Activity

Energy Carbon
Use Content of
Energy

Supply

Industrial
feedstocks

Land-use

Emissions
Scenarios

Carbon Climate
Cycle Sensitivity
Response

Climate
Impacts



Simplified Line of Scenario Logic:
Energy to Emissions

Population Economic Energy Carbon Emissions Carbon Climate Climate
Activity Use Content of Scenarios Cycle Sensitivity Impacts
Energy Response
Supply

Deep uncertainty:
Parameter values + Relationship between the parameters

Scenario analysis is an gppropriate technique for exploring deep uncertainty.



Population

Simplified Line of Scenario Logic:
Energy to Emissions

Economic Energy Carbon Emissions Carbon Climate
Activity Use Content of Scenarios Cycle Sensitivity
Energy Response
Supply

Energy and emissions scenario analysis
aims to explore deep uncertainty
to support risk management decisions.

Climate
Impacts



Exploring Energy Futures

model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?

= What are the sources of mitigation in stabilization scenarios?

= Accounting for direct equivalent energy accounting
= Insights from analyzing several widely-cited energy scenarios
s What is the role of energy efficiency?

s Summary of findings, and your questions
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Disposed to

I Atmosphere
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Decomposing Key Drivers in a Sample Scenario

Reference: “"Dynamics as Usual” (B2)| Stabilization target: 550ppm CO2| Model: MiniCAM



First, using the familiar Kaya Identity...

GDP = C
P GDP =

Reference: “"Dynamics as Usual” (B2) Stabilization target: 550ppm CO2 Model: MiniCAM
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Reference: “"Dynamics as Usual” (B2) Stabilization target: 550ppm CO2 Model: MiniCAM



Economle Walfars Energy Intensity Carbon [ntens ity of
(GOPF per Capita) of Economic Activity Energy Supply
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Reference: “"Dynamics as Usual” (B2) Stabilization target: 550ppm CO2 Model: MiniCAM



Economic Welfare Energy Intensity Carbon Intensity of
IGDP per Capita) of Economic Activity —. Energy Supply
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Reference: “"Dynamics as Usual” (B2) Stabilization target: 550ppm CO2 Model: MiniCAM



Economic Welfare Energy Intensity Carbon Intensity of
IGDP per Capita) of Economic Activity Energy Supply
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Next, using the expanded decomposition...

Reference: “"Dynamics as Usual” (B2) Stabilization target: 550ppm CO2 Model: MiniCAM
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Carbon Intensity of
Energy Supphy
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Holding carbon intensity constant at 1990 20
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Holding carbon intensity constant at 1990
levels in the reference case diverges from
‘dynamics as usual’.

Fuel switching implied to be a response to
the policy intervention may have occurred
anyway if decarbonization rate over the last
80 years had persisted.
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Holding carbon intensity constant at 1990
levels in the reference case diverges from
‘dynamics as usual’.

Fuel switching implied to be a response to
the policy intervention may have occurred
anyway if decarbonization rate over the last
80 years had persisted.

The rest of the mitigation — which may have
been interpreted as accelerated
decarbonization of the energy supply — is
actually from carbon sequestration.
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Productive

PRIMARY CNERGY DELIVERED LHD-LISLE LsEIUL BIRVICE
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e Efficiency: More energy delivered per energy input

e Fuel Switching: Moving from coal to natural gas
e Electrification: Changing the share of electricity in FE




Productive

PRIMARY CNERGY DELIVERED LHD-LISLE LsEIUL BIRVICE
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e Conservation: Less non-productive energy use

e Energy Intensity: More productivity per energy input

e Structural Change: Same productivity, less energy use
Shift toward service econom




Energy Intensity The reference case extends the
or Eeonamic Acivy 1980-2000 trend, and the policy
intervention accelerates that
improvement nearly to 1995-2000
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Energy Intensity
of Economic Activity
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Energy Intensity
of Economic Activity
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Exploring Energy Futures

model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?

= Accounting for direct equivalent energy accounting

= Insights from analyzing several widely-cited energy scenarios
s What is the role of energy efficiency?

s Summary of findings, and your questions



Basic emissions scenario analysis
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Basic emissions scenario analysis

3) Effect of a policy . _
@ intervention Emissions Profile
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The Pervasive
Scenario Intervention Policy

A uniform global carbon price

equal to the marginal cost of abatement

in @ worldwide cap-and-trade program

with full participation, full flexibility, low transaction costs,
and equal burden-sharing.

Though this policy is not feasible to implement, it is used as a proxy:

“A global uniform carbon price has been applied as a proxy of pressure
on the system to induce a variety of mitigation measures.”

- van Vuuren, RIVM 2001



Changes to the Underlying Energy Sector

Primary Energy Resource Profile

Reference Case: “Before” Mitigation Case: “After”
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Annual CO,-equivalent Emissions (GtC-eq)

Decomposing Sources of Mitigation

Reference Case:
“Dynamics as Usual”
(B2 SRES)
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Annual CO,-equivalent Emissions (GtC-eq)
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Decomposing Sources of Mitigation
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Mid-range reference case (B2) limited to 520ppm CO2-eq (IIASA GGI, 2006)



Three modeling teams have published decompositions of their scenario results,
though not the algorithms used to make them.

Thus, the analysis is non-transferable and the results are incomparable.

The algorithm used here can be applied to any scenario for which sufficient
energy data is disclosed.



Comparison with “stabilization wedges” concept

Pacala, S. and R. Socolow. 2004. "Stabilization Wedges,” Science, Vol 305

Presents fixed reference and stabilization paths,
then offers mix & match technologies

in units of a “stabilization wedge” (25 GtC).



Compariso pyedges” concept

Pacala, S. and R. Socolow. 2004. "Stabilization Wedges,” Science, Vol 305
Hanaoka, et al. 2006. Greenhouse Gas Emissions Scenarios Database, NIES. (Fig 3.4)

Uncertainty is fundamental to the problem.
then offers mix & match technologies

in units of a “stabilization wedge” (25 GtC).



Comparison with “stabilization wedges” concept

Pacala, S. and R. Socolow. 2004. "Stabilization Wedges,” Science, Vol 305

Uncertainty is fundamental to the problem.
Technological innovation paths are interdependent.

in units of a “stabilization wedge” (25 GtC).



Comparison with “stabilization wedges” concept

Pacala, S. and R. Socolow. 2004. "Stabilization Wedges,” Science, Vol 305

Uncertainty is fundamental to the problem.
Technological innovation paths are interdependent.

Proportion and timing of mitigation measures matter.



Comparison with “stabilization wedges” concept

20

Solution reflects specific reference

assumptions, decision criteria, and

_ p_ ’ ] Pacala, S. and R. Socolow. 2004.
interaction of technologies in the "Stabilization Wedges,” Science, Vol 305
evolving energy system.
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Exploring Energy Futures

model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?

= What are the sources of mitigation in stabilization scenarios?

= Accounting for direct equivalent energy accounting

= Insights from analyzing several widely-cited energy scenarios
s What is the role of energy efficiency?

s Summary of findings, and your questions



Accounting for the Direct Equivalent method

e Primary energy accounting affects results of both the
decomposition of key drivers and the decomposition of mitigation
sources, and must be taken into account.

e The direct equivalent method sets primary energy directly equal to
the heat content of delivered final energy — giving appearance of
100% efficiency.

e The scale of the distortion increases as more solar, hydro, and
wind power displace fossil fuels. IPCC SRES scenarios treat
nuclear power as a direct equivalent source as well.

e Use of data based on the direct equivalent method will result in
inflated indicators for efficiency, overestimating actual reduction in
demand.



Global Emissions by Mitigation Category
Direct Equivalent assumption taken into account

Reference Case
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Fuel Switching

Path to
Mitigation
Target Non-CO,
gases

Land Use

=
P
Q
e
%
c
Q
0
0
S
LL
o
P
o}
@)
[
S
c
c
<

High Growth (A2r GGI), Stabilization: 670ppm CO,-eq, Model: MESSAGE-MACRO



Exploring Energy Futures

model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?
= What are the sources of mitigation in stabilization scenarios?

= Accounting for direct equivalent energy accounting

s Insights from analyzing several widely-cited energy scenarios

s What is the role of energy efficiency?

s Summary of findings, and your questions



Data

Criteria for sample scenarios:
v" Energy system detalil
|\ J

v" At least three different models

2 v" Accessible data
Detailed
stabilization v' Multiple reference cases
scenarios

v (Relatively) Low stabilization levels



Sample Stabilization Scenarios

1

Scenario Reference @ Stabilization

Study Case Case e
EMF-19 B2 550 CO2 MiniCAM
EMF-19 B2 550 CO2 IMAGE
EMF-19 B2 550 CO2 MSG-MCR
WBGU ALT* 450 CO2 MSG-MCR
WBGU B1* 400 CO2 MSG-MCR
IPCC TAR A2 550 CO2 MSG-MCR
GGl A2 670 CO2 eq MSG-MCR
GGl B2 480 CO2 eq MSG-MCR
efe]! Bl 480 CO2 eq MSG-MCR
MNP B1 400 CO2 IMAGE
IPCC TAR AlB 550 CO2 IMAGE

4|

Multiple reference cases

(Relatively) Low
Stabilization targets

Multiple models
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Sample Stabilization Scenarios

Scenario Reference @ Stabilization
Study Case Case MietlE

-
EMF-19 B2 550 CO2 MiniCAM
EMF-19 B2 550 CO2 IMAGE 2.2
EMF-19 B2 550 CO2 MSG-MCR
WBGU ALT* 450 CO2 i MSG-MCR i
WBGU B1* 400 CO2 MSG-MCR
IPCC TAR A2 550 CO2 MSG-MCR
e1e] A2 670 CO2 eq MSG-MCR
ele] B2 520 CO2 eq MSG-MCR
GGl Bl 480 CO2 eq MSG-MCR
MNP B1 450 CO2 IMAGE 2.2

Common: Reference case &
Stabilization target

Model
Technology assumptions

Reference case
Stabilization target
Model

Model
Technology assumptions

Two “low-low” scenarios



Impact of model & modeler assumptions:
Same reference & stabilization target

Reference: “Dynamics as Usual” (B2 SRES)
Mitigation Target: 550ppm CO, (doubling of pre-industrial levels)
Study: Energy Modeling Forum, Study #19



Impact of model & modeler assumptions:

MESSAGE-MACRO
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Decomposition of: Riahi et al, 2004

Reference: “Dynamics as Usual” (B2 SRES)
Mitigation Target: 550ppm CO, (doubling of pre-industrial levels)
Study: Energy Modeling Forum, Study #19



Impact of model & modeler assumptions:
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Impact of Technology Assumptions:
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Impact of Technology Assumptions:
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Impact of technology assumptions:

Similar high growth reference case and stabilization target from
the same model with

Annual CO, Emissions (GtC)

(Riahi & Roehrl, 2000)

Reference: A2 (SRES)
Target: 550 ppm
Model: MESSAGE-MACRO
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Impact of technology assumptions:
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the same model with
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Impact of scenario assumptions:
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Exploring Energy Futures

model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?
= What are the sources of mitigation in stabilization scenarios?

= Accounting for direct equivalent energy accounting

= Insights from analyzing several widely-cited energy scenarios

s What is the role of energy efficiency?

s Summary of findings, and your questions
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International Energy Agency, Energy Technology Perspectives
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Exploring Energy Futures

model agnostic
= Constructing a Wn framework for interpretation

s How do policy interventions affect key drivers of emissions?
= What are the sources of mitigation in stabilization scenarios?

= Accounting for direct equivalent energy accounting
= Insights from analyzing several widely-cited energy scenarios

s What is the role of energy efficiency?

s Summary of findings, and your questions



Summary of Findings

When sufficient data is disclosed, two decomposition techniques demonstrated
can be applied to a wide range of energy scenarios to perform initial validation
and assessment of diverse energy futures from a variety of sources, including
bottom-up and top-down models.

This type of analysis is necessary for discerning policy-relevant implications of
scenarios generated with (infeasible) proxy policy interventions. (Burden sharing
for a cap-and-trade proxy policy is needed to produce relevant regional results.)

Data disclosure practices should be improved to provide at least the fields needed
to identify sources of mitigation and impact on key drivers of emissions.

The direct equivalent method deserves more attention, even reconsideration (esp.
for nuclear power), and must not be ignored in any policy analysis that promotes
fuel switching.

This analysis is model agnostic, and it does not investigate the origins of demand
reduction values from each model — whether using an AEEI function or a marginal
cost curve for demand reduction. Data for either were difficult to gather.



Summary of Findings

Application of these decomposition techniques indicate that the contribution of
energy efficiency is often understated, straining energy supply options and
leading scenarios to deploy high-risk technologies on a large scale.

Environmental and social impacts of most large-scale supply-side mitigation have
not been well investigated. (“*We tend to like best the things about which we
know the least.”)

Even when efficiency is taken into account, the level of effort implied by
stabilization scenarios is staggering.

Serious climate policy will include both price mechanisms and technology policy.
Price mechanisms will only succeed with responsive energy markets and stable
governance.

We are all decision-makers in a “choose your own adventure” world.
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